学习如何用动态链接库将多个 C 目标文件结合到一个单个的可执行文件之中。

当使用 C 编程语言编写一个应用程序时,你的代码通常有多个源文件代码。

最终,这些文件必须被编译到一个单个的可执行文件之中。你可以通过创建静态或动态库(后者也被称为 共享 shared 库)来实现这一点。这两种类型的库在创建和链接的方式上有所不同。两者都有缺点和优点,这取决于你的使用情况。

动态链接是最常见的方法,尤其是在 Linux 系统上。动态链接会保持库模块化,因此,很多应用程序可以共享一个库。应用程序的模块化也允许单独更新其依赖的共享库。

在这篇文章中,我将演示动态链接是如何工作的。在后期的文章中,我将演示静态链接。

链接器

链接器 linker 是一个命令,它将一个程序的数个部分结合在一起,并为它们重新组织内存分配。

链接器的功能包括:

  • 整合一个程序的所有的部分
  • 计算出一个新的内存组织结构,以便所有的部分组合在一起
  • 恢复内存地址,以便程序可以在新的内存组织结构下运行
  • 解析符号引用

链接器通过这些功能,创建了一个名为 可执行文件 executable 的可以运行的程序。在你创建一个动态链接的可执行文件前,你需要一些用来链接的库,和一个用来编译的应用程序。准备好你 最喜欢的文本编辑器 并继续。

创建目标文件

首先,创建带有这些函数签名的头文件 mymath.h

int add(int a, int b);
int sub(int a, int b);
int mult(int a, int b);
int divi(int a, int b);

使用这些函数定义来创建 add.csub.cmult.cdivi.c 文件。我将把所有的代码都放置到一个代码块中,请将其分为四个文件,如注释所示:

// add.c
int add(int a, int b){
return (a+b);
}

//sub.c
int sub(int a, int b){
return (a-b);
}

//mult.c
int mult(int a, int b){
return (a*b);
}

//divi.c
int divi(int a, int b){
return (a/b);
}

现在,使用 GCC 来创建目标文件 add.osub.omult.odivi.o

(LCTT 校注:关于“ 目标文件 object file ”,有时候也被称作“对象文件”,对此,存在一些译法混乱情形,称之为“目标文件”的译法比较流行,本文采用此译法。)

$ gcc -c add.c sub.c mult.c divi.c

-c 选项跳过链接步骤,并且只创建目标文件。

创建一个共享的目标文件

在最终的可执行文件的执行过程中将链接动态库。在最终的可执行文件中仅放置动态库的名称。实际上的链接过程发生在运行时,在此期间,可执行文件和库都被放置到了主内存中。

除了可共享外,动态库的另外一个优点是它减少了最终的可执行文件的大小。在一个应用程序最终的可执行文件生成时,其使用的库只包括该库的名称,而不是该库的一个多余的副本。

你可以从你现有的示例代码中创建动态库:

$ gcc -Wall -fPIC -c add.c sub.c mult.c divi.c

选项 -fPIC 告诉 GCC 来生成 位置无关的代码 position-independent code (PIC)。-Wall 选项不是必需的,并且与代码的编译方式是无关的。不过,它却是一个有价值的选项,因为它会启用编译器警告,这在排除故障时是很有帮助的。

使用 GCC ,创建共享库 libmymath.so

$ gcc -shared -o libmymath.so add.o sub.o mult.o divi.o

现在,你已经创建了一个简单的示例数学库 libmymath.so ,你可以在 C 代码中使用它。当然,也有非常复杂的 C 库,这就是他们这些开发者来生成最终产品的工艺流程,你和我可以安装这些库并在 C 代码中使用。

接下来,你可以在一些自定义代码中使用你的新数学库,然后链接它。

创建一个动态链接的可执行文件

假设你已经为数学运算编写了一个命令。创建一个名称为 mathDemo.c 的文件,并将这些代码复制粘贴至其中:

#include <mymath.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
  int x, y;
  printf("Enter two numbers\n");
  scanf("%d%d",&x,&y);
 
  printf("\n%d + %d = %d", x, y, add(x, y));
  printf("\n%d - %d = %d", x, y, sub(x, y));
  printf("\n%d * %d = %d", x, y, mult(x, y));

  if(y==0){
    printf("\nDenominator is zero so can't perform division\n");
      exit(0);
  }else{
      printf("\n%d / %d = %d\n", x, y, divi(x, y));
      return 0;
  }
}

注意:第一行是一个 include 语句,通过名称来引用你自己的 libmymath 库。要使用一个共享库,你必须已经安装了它,如果你没有安装你将要使用的库,那么当你的可执行文件在运行并搜索其包含的库时,将找不到该共享库。如果你需要在不安装库到已知目录的情况下编译代码,这里有 一些方法可以覆盖默认设置。不过,对于一般使用来说,我们希望库存在于已知的位置,因此,这就是我在这里演示的东西。

复制文件 libmymath.so 到一个标准的系统目录,例如:/usr/lib64, 然后运行 ldconfigldconfig 命令创建所需的链接,并缓存到标准库目录中发现的最新共享库。

$ sudo cp libmymath.so /usr/lib64/
$ sudo ldconfig

编译应用程序

从你的应用程序源文件代码(mathDemo.c)中创建一个名称为 mathDemo.o 的目标文件:

$ gcc -I . -c mathDemo.c

-I 选项告诉 GCC 来在其后所列出的目录中搜索头文件(在这个示例中是 mymath.h)。在这个示例中,你指定的是当前目录,通过一个单点(.)来表示。创建一个可执行文件,使用 -l 选项来通过名称来引用你的共享数学库:

$ gcc -o mathDynamic mathDemo.o -lmymath

GCC 会找到 libmymath.so ,因为它存在于一个默认的系统库目录中。使用 ldd 来查证所使用的共享库:

$ ldd mathDemo
    linux-vdso.so.1 (0x00007fffe6a30000)
    libmymath.so => /usr/lib64/libmymath.so (0x00007fe4d4d33000)
    libc.so.6 => /lib64/libc.so.6 (0x00007fe4d4b29000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fe4d4d4e000)

看看 mathDemo 可执行文件的大小:

$ du ./mathDynamic
24   ./mathDynamic

当然,它是一个小的应用程序,它所占用的磁盘空间量也反映了这一点。相比之下,相同代码的一个静态链接版本(正如你将在我后期的文章所看到的一样)是 932K !

$ ./mathDynamic
Enter two numbers
25
5

25 + 5 = 30
25 - 5 = 20
25 * 5 = 125
25 / 5 = 5

你可以使用 file 命令来查证它是动态链接的:

$ file ./mathDynamic
./mathDynamic: ELF 64-bit LSB executable, x86-64,
dynamically linked,
interpreter /lib64/ld-linux-x86-64.so.2,
with debug_info, not stripped

成功!

动态链接

因为链接发生在运行时,所以,使用一个共享库会产生一个轻量型的可执行文件。因为它在运行时解析引用,所以它会花费更多的执行时间。不过,因为在日常使用的 Linux 系统上绝大多数的命令是动态链接的,并且在现代硬件上,所能节省的时间是可以忽略不计的。对开发者和用户来说,它的固有模块性是一种强大的功能。

在这篇文章中,我描述了如何创建动态库,并将其链接到一个最终可执行文件。在我的下一篇文章中,我将使用相同的源文件代码来创建一个静态链接的可执行文件。


via: https://opensource.com/article/22/5/dynamic-linking-modular-libraries-linux

作者:Jayashree Huttanagoudar 选题:lkxed 译者:robsean 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

⤧  Next post 硬核观察 #693 俄罗斯的 Debian 衍生发行版的开发商计划上市 ⤧  Previous post Meta 开源了语言翻译 AI 模型